62 research outputs found

    High efficiency compression for object detection

    Full text link
    Image and video compression has traditionally been tailored to human vision. However, modern applications such as visual analytics and surveillance rely on computers seeing and analyzing the images before (or instead of) humans. For these applications, it is important to adjust compression to computer vision. In this paper we present a bit allocation and rate control strategy that is tailored to object detection. Using the initial convolutional layers of a state-of-the-art object detector, we create an importance map that can guide bit allocation to areas that are important for object detection. The proposed method enables bit rate savings of 7% or more compared to default HEVC, at the equivalent object detection rate.Comment: The paper is published in IEEE ICASSP 18

    Can you tell a face from a HEVC bitstream?

    Full text link
    Image and video analytics are being increasingly used on a massive scale. Not only is the amount of data growing, but the complexity of the data processing pipelines is also increasing, thereby exacerbating the problem. It is becoming increasingly important to save computational resources wherever possible. We focus on one of the poster problems of visual analytics -- face detection -- and approach the issue of reducing the computation by asking: Is it possible to detect a face without full image reconstruction from the High Efficiency Video Coding (HEVC) bitstream? We demonstrate that this is indeed possible, with accuracy comparable to conventional face detection, by training a Convolutional Neural Network on the output of the HEVC entropy decoder

    De-sketching

    Get PDF
    Many software applications exist for plotting graphs of mathematical functions, yet there are none (to our knowledge) that perform the inverse operation - estimating mathematical expressions from graphs. Since plotting graphs (especially by hand) is often referred to as "sketching," we refer to the inverse operation as "de-sketching." As the number of mathematical expressions that approximate a given curve can be quite large, in this demo we restrict our attention to polynomials, and present a deep model that performs de-sketching by finding the best second-degree polynomial to fit the curve in the input image. Currently, our trained model is able to provide reasonably accurate estimates of polynomial coefficients for both synthetically-generated and hand-drawn curves

    The Data Gap in Sports Analytics and How to Close It

    Get PDF
    As the importance and prevalence of sports analytics grows, so does the inequality in sports data. In this paper we examine two main sources of such disparity - the perceived hierarchy of sports and privatization of data. We argue that such inequality hurts the sports analytics community in the short and long terms, and suggest ways for the deep-learning, AI, and sports analytics communities to help mitigate the issue. Keywords: Sports Analytics; AI; Team Sports; Diversit

    Online MoCap Data Coding with Bit Allocation, Rate Control, and Motion-Adaptive Post-Processing

    Get PDF
    With the advancements in methods for capturing 3D object motion, motion capture (MoCap) data are starting to be used beyond their traditional realm of animation and gaming in areas such as the arts, rehabilitation, automotive industry, remote interactions, and so on. As the amount of MoCap data increases, compression becomes crucial for further expansion and adoption of these technologies. In this paper, we extend our previous work on low-delay MoCap data compression by introducing two improvements. The first improvement is the bit allocation to long-term and short-term reference MoCap frames, which provides a 10-15% reduction in coded bitrate at the same quality. The second improvement is the post-processing in the form of motion-adaptive temporal low-pass filtering, which is able to provide another 9-13%savings in the bitrate. The experimental results also indicate that the proposed online MoCap codec is competitive with several state-of-the-art offline codecs. Overall, the proposed techniques integrate into a highly effective online MoCap codec that is suitable for low-delay applications, whose implementation is provided alongside this paper to aid further research in the field
    • …
    corecore